1306. Molecular Polarisability. Apparent Conformations of Dichlorodiphenyltrichloroethane (D.D.T.) and Two Derivatives in Non-polar Solvents

By (Miss) M. L. Kemp and R. J. W. Le Fèvre

Abstract

Molar Kerr constants and apparent dipole moments at 25° are recorded for dichlorodiphenyltrichloroethane (D.D.T.) in carbon tetrachloride and benzene, and for its dehydrochlorinated and chlorinated derivatives in carbon tetrachloride. Provided that only equal rotations of the two p-chlorophenyl groups be considered, agreement between observed and calculated molar Kerr constants is obtained when $\phi=c a . \pm 40^{\circ}$ (for I), $c a . \pm 50^{\circ}$ (for II), and $c a$. $\pm 55^{\circ}$ (for III), where ϕ is defined such that $\phi=0^{\circ}$ when the p-chlorophenyl planes are perpendicular to the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}(2)-\mathrm{C}_{\mathrm{Ar}}$ plane (for I and III) and parallel to the $\mathrm{C}(2)=\mathrm{C}(1) \mathrm{Cl}_{2}$ plane (for II).

The measurements here reported have been made to examine the apparent conformations, in non-polar media, of D.D.T. [1,1,1-trichloro-2,2-di(p-chlorophenyl)ethane] (I), its dehydrochlorinated derivative [1,1-dichloro-2,2-di(p-chlorophenyl)ethylene] (II), and its chlorinated derivative [1,1,1,2-tetrachloro-2,2-di-(p-chlorophenyl)ethane] (III).

Experimental

Materials, Apparatus, etc.-Specimens of pure D.D.T. (m. p. 107.5-108.5 ${ }^{\circ}$) and of its ethylene derivative (m. p. 88-89) were kindly given by Imperial Industries (Australia and New Zealand Ltd.). A bulk supply of D.D.T. (m. p. 107.5-108.5) was obtained by several recrystallisations from ethanol of "technical" D.D.T. powder. A sample of 1,1-dichloro2,2 -di-(p-chlorophenyl)ethylene (m. p. $88-89^{\circ}$) was prepared ${ }^{1}$ by refluxing D.D.T. with ethanolic potassium hydroxide for 3 hr ., extracting with ether, drying, and recrystallising several times from ethanol. The chlorination of (I) to $1,1,1,2$-tetrachloro-2,2-di- $(p$-chlorophenyl)ethane, m. p. $93-96^{\circ}$ (from carbon tetrachloride), was carried out by Mr. K. E. Calderbank to whom we are indebted.

Apparatus, techniques, symbols used, and methods of calculation have been described before. ${ }^{2,3}$ The quantities $\Delta \varepsilon, \Delta d, \Delta n$, and ΔB are the differences found between the dielectric constants, densities, refractive indices, and Kerr constants, respectively, of carbon tetrachloride or benzene as solvent, and of solutions containing weight fractions w_{2} of solute. Observations and results are summarised in Tables 1 and 2. When $w_{2}=0$, the following apply at 25° :

Solvent	ε	d_{1}	$\left(n_{1}\right)_{\mathbf{D}}$	$10^{7}\left(B_{1}\right)_{\mathbf{D}}$
Carbon tetrachloride $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$2 \cdot 2270$	$1.5845_{\mathbf{4}}$	1.4575	0.070
Benzene $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$\mathbf{2 . 2 7 2 5}$	0.8738	1.4973	0.410

Previous Measurements.-Dipole-moment measurements of D.D.T. in benzene, giving estimates ranging from 0.91 to 1.12 D , are in the literature. ${ }^{4}$ A moment of 1.12 D has been reported ${ }^{5}$ in carbon tetrachloride as solvent. It is to be noted, however, that only one solution (of $c a .13 \%$ weight fraction) was used in obtaining this value. That the dipole moments reported here are lower than those in ref. 4 is mainly due to different approximations for the

[^0]Table l.
Incremental dielectric constants, densities, refractive indices, and Kerr constants of solutions at 25°

Solute: (I). Solvent: carbon tetrachloride
(I.C.I. gift sample)

$10^{5} w_{2} \ldots \ldots \ldots \ldots \ldots$	419	934	1402	2301	
$10^{4} \Delta \varepsilon \ldots \ldots \ldots \ldots \ldots$	43	96	138	202	
$10^{4} \Delta n$	$\cdots \cdots \cdots \cdots \cdots$	$0 \cdot 0_{6}$	$0 \cdot 1_{7}$	$0 \cdot 2_{4}$	$0 \cdot 2_{9}$
$-10^{9} \Delta B$	$\ldots \ldots \ldots \cdots \cdots$				

(Recrystallised technical D.D.T.)											
$10^{5} w_{2}$	382	534	547	868	994	1153	1275	1585	1796	1856	1929
$10^{4} \Delta \varepsilon$.			-	99	-		146	-	-		
$-10^{5} \Delta d$.	-	-	-	113	131	148	171	-	-	246	-
$10^{4} \Delta n$.	7	10	10	-	19	21	-	-	-	34	36
$-10^{9} \Delta B$	-	-	-	-	-	-	-	$0 \cdot 24$	$0 \cdot 2_{8}$	-	

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=1.04_{5} ; \Sigma \Delta d / \Sigma w_{2}=-0.132 ; \Sigma \Delta n / \Sigma w_{2}=0.185 ; \Sigma \Delta B / \Sigma w_{2}=-0.15_{7} \times 10^{-7}$
Solute: (I). Solvent: benzene

$10^{5} w_{2} \ldots \ldots \ldots$	1198	1697	2042	2940	3525	-
$10^{4} \Delta \varepsilon \ldots \ldots \ldots$	69	84	101	150	181	-
$10^{5} w_{2} \ldots \ldots \ldots$.	1183	1348	1834	2042	2693	3525
$10^{5} \Delta d \ldots \ldots$.	420	485	656	748	954	1284
$10^{4} \Delta n \ldots \ldots \ldots$	9	10	15	17	20	28
$-10^{9} \Delta B \cdots \cdots$.	$0 \cdot 5_{7}$	$0 \cdot 6_{5}$	$0 \cdot 8_{0}$	$0 \cdot 9_{2}$	$1 \cdot 2_{9}$	$1 \cdot 5_{3}$

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.51_{3} ; \quad \Sigma \Delta d / \Sigma w_{2}=0.360 ; \quad \Sigma \Delta n / \Sigma w_{2}=0.078 ; \quad \Sigma \Delta B / \Sigma w_{2}=-0.45_{6} \times 10^{-7}$

	Solute: (II).		Solvent: CCl_{4}			Solute: (HII). Solvent: CCl_{4}				
$10^{5} w_{2}$	616	954	971	1527	2340	$10^{5} w_{2}$	1439	1787	1947	2459
$10^{4} \Delta \varepsilon$	38	51		92	137	$10^{4} \Delta \varepsilon$	-	117	129	166
$-10^{5} \Delta d$		200	-	282	432	$10^{5} \Delta d$	ca. 0 throughout			
$10^{4} \Delta n$	14	20	-	32	50	$10^{4} \Delta n$	29	37	40	49
$10^{9} \Delta B$	$0 \cdot 61$	$1 \cdot 1_{8}$	$1 \cdot 2_{1}$	$2 \cdot 10$	$3 \cdot 4_{2}$	$10^{9} \Delta B$		$1 \cdot 49$	$1 \cdot 68$	$2 \cdot 0_{8}$
henc $\Sigma \Delta n$	$\Delta \varepsilon / \Sigma$	$=0 .$		$\begin{gathered} v_{2}= \\ 1 \cdot 3_{3} \end{gathered}$.	$\begin{gathered} \text { whence } \Sigma \Delta \varepsilon / \Sigma w_{2}=0.66_{5} ; \Sigma \Delta d / \Sigma w_{2}=0 ; \\ \Sigma \Delta n / \Sigma w_{2}=0.203 ; \Sigma \Delta B / \Sigma w_{2}=0.84_{8} \times 10^{-} \end{gathered}$				

Table 2
Polarisations, refractions, and molar Kerr constants in carbon tetrachloride at 25°

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	∞P_{2} (c.c.)	$R_{\text {D }}$ (c.c.)	μ (D) \dagger	$10^{12} \propto\left(m K_{2}\right)$
(I)	$1.04{ }_{5}$	-0.083	$0 \cdot 127$	$-2 \cdot 24$	$109 \cdot 6$	87.4	0.93	-4.7
(I) *	$0.51{ }_{3}$	$0 \cdot 412$	$0 \cdot 052$	-1.11_{2}	$105 \cdot 3$	$85 \cdot 7$	$0 \cdot 86$	-22.0
(II)	$0.58{ }_{5}$	-0.120	$0 \cdot 146$	$19 \cdot 8$	$85 \cdot 0$	$83 \cdot 3$	0	$46 \cdot 9$
(III)	$0 \cdot 665$	0	$0 \cdot 139$	$12 \cdot 1$	98.7	$92 \cdot 6$	ca. 0	$36 \cdot 8$

distortion polarisation. For example, a moment of 1.2 D in benzene at 20° has been reported, ${ }^{6}$ where the total polarisation observed is 110.5 c.c. (compare 105.3 c.c. $/ 25^{\circ}$ in Table 2), but ${ }_{\mathrm{f}}$ P is taken as $84.0 \mathrm{c} . \mathrm{c}$. (compare 86.28 c.c. for $R_{\text {D }}$ calculated from Vogel's tables ${ }^{7}$). McClellan ${ }^{4}$ has no entry for the ethylene and chlorinated derivatives in carbon tetrachloride. Zero moments have, however, been obtained for (II) in benzene and in heptane, and a moment of 0.50 D has been claimed for (III) in heptane.

Discussion

Molecule (I).-An estimate of the apparent conformation of D.D.T. can be obtained by calculating molar Kerr constants for various angles of rotation of the two p-chlorophenyl rings and comparing the calculated values with that observed. The group polarisability semi-axes are chosen as follows: $b_{i}\left(\mathrm{C}-\mathrm{Cl}_{3}\right)$ from 1,1,1-trichloroethane, ${ }^{8} b_{\mathrm{i}}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$ from chlorobenzene, $b_{i}(\mathrm{C}-\mathrm{H})$ from paraffin hydrocarbons, and $b_{\mathrm{i}}(\mathrm{C}-\mathrm{C})$ from cyclohexane. ${ }^{9}$

[^1]If the molar refraction be calculated using Vogel's values ${ }^{7}$ corresponding to these groups, the R_{D} is found to be in good agrement with that observed both in carbon tetrachloride and benzene. The reference áxes (Figure 1) are chosen as the sides of a cube with $\mathrm{C}(2)$ at the centre and the four groups at mutually opposite corners (since the preliminary assumption is made that the bond angles are tetrahedral). The angle of rotation ϕ of each of the p-chlorophenyl planes is defined as zero when b_{3} for the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ group is in the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}(2)-\mathrm{C}_{\mathrm{Ar}}$ plane, and as positive for anticlockwise rotations of b_{3} [seen from $\mathrm{C}(2)$ to C_{At}].

Values of the function, ${ }_{m} K\left(\phi_{1}, \phi_{2}\right)$, are calculated for equal rotations of the two $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ planes, both the symmetric case (where $\phi_{1}=\phi_{2}$) and the antisymmetric one [where $\theta_{1}=-\phi_{2}$, and the $\mathrm{H}-\mathrm{C}(2)-\mathrm{C}(1)$ plane of symmetry is no longer retained]. The results are summarised in Table 3, in which the resultant dipole moment is taken as 0.93 D , acting along the $\mathrm{C}(2)-\mathrm{H}$ bond direction.

Figure 1

Figure 2

The effect of changing the magnitude of the resultant moment can be seen in the following. For $\phi_{1}=\phi_{2}= \pm 40^{\circ}$, resultant moments of $0.86,0.93,0.96,1 \cdot 100$, and $1 \cdot 10 \mathrm{D}$ give $10^{12}{ }_{\mathrm{m}} K$ values of $+2 \cdot 7,-1 \cdot 0,-2 \cdot 6,-4 \cdot 9$, and $-11 \cdot 1$, respectively; for $\phi_{1}=-5^{\circ}$, $\phi_{2}=+5^{\circ}$, and the same dipole moments, the calculated values of ${ }_{m} K$ are $+0 \cdot 2,-\mathbf{l} \cdot 4$, $-2 \cdot 2,-3 \cdot 2$, and $-6 \cdot 0$, respectively.

The effect of changing the direction of the resultant dipole moment was investigated by varying this direction away from the $\mathrm{H}-\mathrm{C}$ bond, in the $\mathrm{H}-\mathrm{C}(2)-\mathrm{C}(1)$ plane, by an angle α (Figure 2), the variation being such as to increase the direction cosine of μ with respect to the X-axis. For $\phi_{1}=\phi_{2}= \pm 40^{\circ}$, and resultant moment 0.93 D , values of $\alpha=0,5,10$, and 35° gave $10^{12}{ }_{\mathrm{m}} K=-1 \cdot 0,-4 \cdot 1,-7 \cdot 1$, and $-17 \cdot 5$, respectively.

The third assumption involved in Table 3, viz., that of tetrahedral bond angles, appears valid since a variation in the $\mathrm{C}_{\mathrm{A}_{t}}-\mathrm{C}(2)-\mathrm{C}_{\mathrm{Ar}}$ angle from tetrahedral to 115° (the plane of symmetry $\mathrm{H}-\mathrm{C}(2)-\mathrm{C}(1)$ being retained) has negligible effect on the calculated $\mathrm{m}_{\mathrm{m}} K$.

From Table 3, it can be seen that closest agreement between calculated and observed ${ }_{\mathrm{m}} K$ values is obtained in the following cases. Assuming $\phi_{1}=\phi_{2}, \phi_{1}=c a . \pm 40^{\circ}$; assuming

Table 3

$\phi_{1}=-\phi_{2}, \phi_{1}=c a .-5^{\circ}$ or -80°. These latter two estimates of ϕ, involving antisymmetric rotation of the p-chlorophenyl groups, would seem to be sterically impossible from scaled atomic models. In the case of symmetric rotation, a plot of ${ }_{\mathrm{m}} K$ (calc.) against ϕ shows that changes in the resultant moment tend to alter the depth of the minimum rather than its position along the ϕ-axis. Thus, it seems reasonable to conclude that the apparent conformation of D.D.T., as solute in benzene or carbon tetrachloride, is that given by $\phi_{1}=\phi_{2}=c a . \pm 40^{\circ}$.

Molecule (II).-This compound has been treated in a similar manner to that described above, with the exceptions that: (i) the $\mathrm{C}(2)=\mathrm{C}(1) \mathrm{Cl}_{2}$ bond parameters are those from 1,1-dichloroethylene; ${ }^{\mathbf{1 0}}$ (ii) the reference axes are chosen such that the X-axis lies along $\mathrm{C}=\mathrm{C}$, the $\mathrm{C}(2)=\mathrm{C}(1) \mathrm{Cl}_{2}$ group lies in the $X Y$-plane, and the bond angles are assumed to be 120°. The angle of rotation ϕ is defined as zero when the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$ groups are parallel to the $X Y$-plane, and ${ }_{\mathrm{m}} K$ is calculated for symmetric ($\phi_{1}=\phi_{2}$) and antisymmetric ($\phi_{1}=-\phi_{2}$) rotations, as shown in Table 4.

Table 4

${ }_{\mathrm{m}} K\left(\phi_{1}, \phi_{\mathbf{2}}\right)$ for (II) ${ }^{*} ; \mu_{\text {res }}=0$										
Symmetric rotations							Antisymmetric rotations \dagger			
$\phi_{1}\left(=\phi_{2}\right)$	0	± 30	± 40	± 50	± 60	± 90	0	$\stackrel{ \pm}{ \pm}$	$\pm{ }^{ \pm 0}$	$\stackrel{ \pm}{90}$
$10^{12} \mathrm{~m} K$	$110 \cdot 3$	76.7	$58 \cdot 9$	$43 \cdot 5$	$32 \cdot 4$	$21 \cdot 7$	$110 \cdot 3$	86.9	$42 \cdot 6$	21.7
	* To be compared with $10^{12}{ }_{\mathrm{m}} K$ (obs.) $=46.9$. \dagger For these $\phi_{1}\left(=-\phi_{2}\right)$									

Small increases in polarity caused only slight changes in the calculated ${ }_{\mathrm{m}} K$ values. For this compound, however, the choice of group polarisability semi-axes involves the assumption of negligible conjugation between the carbon-carbon double bond and the π-electrons of the benzene rings. Since this effect would be maximum for $\phi=0^{\circ}$, which is sterically impossible, it seems reasonable to assume that any directional properties of exaltation need not be considered. Thus, agreement between calculated and observed values of ${ }_{\mathrm{m}} K$ is obtained in the following cases. Assuming $\phi_{1}=\phi_{2}, \phi_{1}=c a$. $\pm 50^{\circ}$; assuming $\phi_{1}=-\phi_{2}, \phi_{1}=c a$. $\pm 60^{\circ}$. From scaled atomic models, the latter seems sterically unlikely, and thus it is reasonable to conclude that the apparent conformation is that given by $\phi_{1}=\phi_{2}=c a . \pm 50^{\circ}$.

Molecule (III).-This compound, the chlorinated derivative of D.D.T., has been treated in a similar manner to that described for D.D.T. Both methyl and t-butyl chloride polarisability semi-axes ${ }^{9}$ are used for the $\mathrm{C}(2)-\mathrm{Cl}$ bond, since these represent the probable lower and upper limits of the anisotropy of this bond. The results of calculations, assuming tetrahedral angles and a zero dipole moment, are summarised in Table 5.

Table 5

$$
\mathrm{m}_{\mathrm{m}} K\left(\phi_{1}, \phi_{2}\right) * \text { for (III) } ; \mu_{\mathrm{res}}=0
$$

Symmetric rotations

				+ +30	$+40$		+ 60			+90
$\phi_{1}=\phi_{2}(\ldots$ $10^{12}{ }_{\text {m }} K(\mathrm{~A})$	10.5	$\stackrel{ \pm 10}{10.8}$	$\stackrel{ \pm}{12}$	$\stackrel{ \pm}{ \pm} 30$	$\stackrel{ \pm}{22.2}$	$\stackrel{ \pm}{32} \cdot 1$	$\stackrel{+}{ \pm 4 \cdot 60}$	$\stackrel{ \pm}{55.6}$	$\stackrel{+}{ \pm 4 \cdot 1}$	$\stackrel{+}{+97}$
$10^{12}{ }_{\mathrm{m}} K(\mathrm{~B})$	$12 \cdot 3$	$12 \cdot 4$	$13 \cdot 1$	15.5	$20 \cdot 8$	$29 \cdot 4$	$40 \cdot 0$	$50 \cdot 6$	$58 \cdot 4$	$61 \cdot 3$
Antisymmetric rotations										
$\phi_{1}\left(=-\phi_{2}\right)$	-90	-80	-70	-60	-50	-40	-30	-20	-10	
$10^{12}{ }_{\text {ma }} K(\mathrm{~A})$	$67 \cdot 2$	62.2	$53 \cdot 8$	$43 \cdot 3$	$32 \cdot 3$	$22 \cdot 5$	$14 \cdot 9$	$10 \cdot 3$	$8 \cdot 9$	
$10^{12} \mathrm{~m} K(\mathrm{~B})$	$61 \cdot 3$	$54 \cdot 2$	$44 \cdot 5$	$33 \cdot 5$	$23 \cdot 0$	14.5	$9 \cdot 0$	6.9	$8 \cdot 2$	
$\phi_{1}\left(=-\phi_{2}\right)$	0	+10	+ 20	+30	+40	$+50$	$+60$	+70	$+80$	$+90$
$10^{12} \mathrm{~m} K(\mathrm{~A})$	10.5	$14 \cdot 8$	$21 \cdot 4$	$29 \cdot 9$	$39 \cdot 7$	$49 \cdot 4$	$58 \cdot 3$	$64 \cdot 9$	$68 \cdot 1$	$67 \cdot 2$
$10^{12}{ }_{\mathrm{m}} K(\mathrm{~B})$	$12 \cdot 3$	$18 \cdot 7$	26.7	$35 \cdot 6$	$44 \cdot 8$	$53 \cdot 3$	$60 \cdot 1$	$64 \cdot 2$	$64 \cdot 7$	$61 \cdot 3$

[^2]As in the case of D.D.T., the assumption of tetrahedral angles in (III) is a sufficiently accurate basis for these calculations. Further, the effect on the calculated ${ }_{m} K$ values of a small resultant dipole moment can be shown to be negligible compared with that involved in the choice of polarisability semi-axes for the $\mathrm{C}(2)-\mathrm{Cl}$ bond. Thus, of the conformations for which agreement occurs between calculated and observed ${ }_{\mathrm{m}} K$ values, those involving antisymmetric rotation of the two p-chlorophenyl groups would seem to be exlcuded by steric factors. Accordingly, the apparent conformation of this chlorinated derivative of D.D.T. is specified by $\phi_{1}=\phi_{2}=c a . \pm 55^{\circ}$.

The award of a Commonwealth Research Scholarship to M. L. K. is gratefully acknowledged.

[^0]: ${ }^{1}$ H. L. Haller et al., J. Amer. Chem. Soc., 1945, 67, 1599.
 ${ }^{2}$ R. J. W. Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{3}$ C. G. Le Fèvre and R. J. W. Le Fèvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, 2, 261 ; (b) ch. XXXVI in " Physical Methods of Organic Chemistry," ed. A. Weissberger, Interscience, New York and London, 3rd edn., vol. I, p. 2459.
 ${ }^{4}$ A. L. McClellan, " Tables of Experimental Dipole Moments," Freeman, San Francisco, 1963,
 5 S. B. Kulkarni, J. Indian Chem. Soc., 1949, 26, 215.

[^1]: ${ }^{6}$ H. Wild, Helv. Chim. Acta, 1946, 29, 497.
 7 A. I. Vogel, W. T. Cresswell, G. H. Jeffrey, and J. Leicester, J., 1952, 514.
 ${ }^{8}$ R. J. W. Le Fèvre and G. L. D. Ritchie, J., 1963, 4933.
 ${ }^{9}$ R. J. W. Le Fèvre, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.

[^2]: ${ }^{10}$ R. Bramley, C. G. Le Fèvre, R. J. W. Le Fèvre, and B. P. Rao. J., 1959, 1183.

